Welcome to Microscopes Blog

Microscopes Blog is dedicated entirely to microscopes, industry-related news and product reviews. We try to do our best in providing our readers with the most adequate and truthful reviews on all microscopes products and their accessories. And we tend to share our thoughts on anything related to the fascinating field of microscopy. So if you share our passion of exploring the tiny objects that are too small for the naked eye to see, this blog is for you!

Follow Microscopes Blog:

Paul’s Favorite Posts

Bacterial Cell Wall

Browse popular tags

11 Oct

Using a single stain to color a bacterial cell is commonly referred to as a simple stain.  The most common dyes for this type of stain are methylene blue, fuchsin, and crystal violet.  These dyes work well because they have positively charged color bearing ions or chromophores.  Bacteria are negatively charged which creates a natural attraction with positively charged dyes.  Basic or cationic dyes have a positive charge making them practical for bacterial staining whereas acidic dyes like eosin have a negative charge.  Dyes such as eosin will not stain bacterial cells due to their repelling forces.  Staining times for most simple stains are relatively short, usually from 30 seconds to 2 minutes, depending on the affinity of the dye.  After a smear has been stained for the required time, it is washed off gently, blotted dry, and examined directly under oil immersion.  This type of slide is useful in determining basic morphology and the presence or absence of certain kinds of granules.

27 Sep

bacterial smear preparationBacterial smear preparation is an integral technique in microbiology laboratories.  There are several objectives when preparing a smear.  The first is to make sure that the cells adhere to the microscope slide so that they do not get washed off during the staining and washing procedures.  It is also important to prevent the cells from shrinking.  Finally, it is very important to prepare thin smears.  If a smear is too thick one will not be able to see individual cells, their arrangement, or the details of their microstructures.  Thick smears with large clumps of cells can entrap the stain preventing it from being washed.  The first step in preparing a smear depends on  whether the organism has been growing in liquid or solid media.  Two or more loopfuls of liquid media containing the organism can be placed on the slide.  One can use an inoculating loop to disperse organisms from solid media into a drop of water on the slide.

13 Sep

pure cultureIn natural environments bacteria exist as mixed populations.  This presents a challenge when trying to study a single species.  It is very rare to find a single species living in natural environments.  Robert Koch, a pioneer in medical microbiology, knew that he would have to find a way to isolate bacteria from other species if he wanted to prove that a specific agent caused a disease.  His lab contributed many techniques to microbiology including the method designed to obtain a pure culture of bacteria.  Pure cultures contain only a single bacteria.  Pure cultures allow one to study the morphological and physiological characterisitics of an individual organism.  Two common methods are the streak plate and the pour plate.

30 Aug

aseptic techniqueAseptic technique ensures that no contaminating organisms are introduced into culture materials when these materials are innoculated.  It also prevents the handler of the organisms from being contaminated.  Aseptic technique can be used to transfer broth culture to a plate or to transfer a colony from a plate to a slant culture for example.  First the work area is treated with disinfectant to kill any microorganisms.  This may not kill endospores if they are present.  Cultures are transferred using innoculating loops and needles.  These items are sterilized by inserting them into the flame of a bunsen burner until they are red hot.  Tubes are sterilized as well by removing the cap and flaming the mouth.  After innoculation the loop or needles is flamed in the bunsen burner to destroy any organisms that remain.  The loop or needle can then be placed back into its holder.

16 Aug

fungi 2Fungi are heterotrophic eukaryotic organisms that produce exoenzymes and absorb their nutrients.  Fungi may be saprophytic or parasitic and can be unicellular or filamentous.  The features that separate fungi from other organisms are: eukaryotic, heterotrophic, lack tissue differentiation, have cell walls of chitin or other polysaccharides and propagate by spores.  Organisms such as water molds, mushrooms, puffballs, yeasts, and molds.  These organisms do not have a consistent genetic background and are thought to have evolved from two different ancestral lines.  Traditional methods of classification rely on morphological characteristics however more modern techniques use genetic analysis to classify fungi.  Data collected relatively rececently from genetic analysis suggests that classification based on morphology does not reflect evolutionary relationships.

02 Aug

bacteria shapeThe shape and structure of bacteria make it easy to identify them.  The structure of bacteria is simple.  They have supercoiled DNA in the cytoplasm and are able to carry out photosynthesis and respiration.  Their cell wall is made of a molecule called peptidogylan that is not found in any other kind of cell.  Bacteria range from .5 microns to 10 microns.  The shapes of bacteria can be grouped into three morphological types: rods (bacilli), cocci (spherical) and spirals or curved rods.  The rods or bacilli can have rounded, flat, or tapered ends and they can be motile or nonmotile.  Cocci may occur singly, in chains, in tetrad, or in irregular masses.  Most cocci are nonmotile because they lack flagella, the organelles of motility.  The spiral bacteria can exist as slender spirochaetes, as a spirillum, or as a comma-shaped curved rod (vibrio).

19 Jul

infectious diseaseA disease casued by microorganisms (such as bacteria, viruses) that enter the body and multiply in the tissues at the expesne of the host is said to be an infectious disease.  Infectious diseases that are transmissible to other people are called communicable.  The transfer of communicable infectious diseases between individuals can be accomplished by direct contact such as handshaking, kissing, and sexual contact.  They can also be spread indirectly through food, water, objects and animals.  Epidemiology is the study of how, when, where, what, and who are involved in the spread of disease in human populations.  Epidemiologists determine the classification of the disease.  If the number of newly reported cases in a given period of time in a specific area is excessive, an epidemic is in progress.  If the disease spreads to one or more continents, a pandemic is in progress.

05 Jul

Rh factorBetween 1900 and 1940 a lot of research was performed to uncover the presence of other antigens in human red blood cells.  In 1940, Landsteiner and Wiener reported that rabbit sera containing antibodies against the red blood cells of rhesus monkey would agglutinate the red blood cells of 5% of white humans.  This antigen in humans which was first designated as the Rh factor, was found to exist as six antigens: C, c, D, d, E, and e.  Of these six antigens, the D factor is responsible for the Rh-positive condition and is found in 85% of Whites, 94% of Blacks, and 99% of Asians.  Typing blood for the rh factor can also be performed by both tube and slide methods but there are differences between the two techniques.  The red blood cells must not be diluted in saline because they will not agglutinate and the test must be performed at 37 C for the tube test and 45 C for the slide test.

21 Jun

blood typingThe procedure for blood typing was developed by Karl Landsteiner around 1900.  He determined that human blood groups can be separated into four groups on the basis of two antigens that are present on the surface of red blood cells.  These antigens are designated as A and B.  The four groups are A, B, AB, and O.  The last group, type O, which is characterized by the absence of A or B antigens, is the most common type in the U.S. (45% of the population).  Type A is next in frequency at about 39%, type B is 12% and type AB 4%.  Blood typing is performed with antisera containing high titers of anti-A and anti-B antibodies.  The test can be performed in a tube where a drop of each kind of anti-serum is added to the separate samples of saline suspensions of blood cells.

07 Jun

WBC countA differential white blood cell count or differential WBC count can be used to determine which infectious disease is present in an individual.  In 1883 Elie Metchnikoff puplished the phagocytic theory of immunity.  He postulated that large cells in the tissue fluid and blood of animals were the first line of defense against foreign bodies.  He stated that the larger cells were macrophages and the smaller ones were microphages.  Neutrophils make up roughly 50-70% of the cells in blood, lymphocytes make up 20-30%, monocytes 2-6%, eosinophils 1-5% and basophils less than 1%.  A normal white blood cell count is between 5,000 and 10,000 white blood cells per cubic millimeter.  High white blood cell counts are referred to as leukocytosis.  When counts fall below 5,000 leukopenia is said to exist.